Apple Pay Button Demo Area:

Donate with & Pay

Buy with & Pay

Regular old button

Web Components

A look at the Apple Pay Button and our own BC logo as a web
component

Morgan Murrah - 09/05/2024

Copy styles into a new web component element

Introduction

Morgan Murrah

* Working in technology and a lot on the

web for about 8 years, Lived in Bellingham
since 2018

e Atlanta GA (1989-1998, 2016-2017) &
Asheville NC (2017) before that.

e (Graduated law school and lived in New
/ealand before that (1998-2016)

* Changed career in 2016 into technology

Introduction cont. — Career highlights after changing careers:

* 4 years at a startup as a software developer on a team of 3-4 for a
small company, LAMP stack

* 10 months AMP HTML Development for a large corporate client

* 1.5 years and counting as a Digital Content Manager working for
some big clients

* Credited volunteer at the Worldwide Web Consortium (W3C) 6+
times on a specification, the Web Sustainability Guidelines

* Really appreciate Bellingham Codes (has helped me find my last
two jobs)

Thank you’s/Credits for inspiration

There are a few to name drop....

o Scott Jehl, Engineer at Squarespace and co-creator of WebPageTest, also
creator of the course(s) Web Components Demystified and Lightning-fast
Web Performance

* Alex Russell, Partner Product Manager on Microsoft Edge

* Tantek Celik, web standards lead at Mozilla

o Katrina Grace, independent developer who made Facet the library for making
Web Components with mostly HTML that got me into this topic.

All contributed a little to this talk and a lot to web components

https://github.com/kgscialdone/facet

Components

Components Components
Components Components
Components
Components What does that even mean?

There are a bunch of things called components

The Wikipedia article looks amateur?

By Web Components, we mean this.
A specific set of features that work together that now enjoy strong browser support.

Browser support G CHROME (O oPErA &P SAFARI @ FIREFOX &® EpcE

@ HTML TEMPLATES STABLE STABLE STABLE STABLE STABLE
o CUSTOM ELEMENTS STABLE STABLE STABLE STABLE STABLE
@ SHADOW DOM STABLE STABLE STABLE STABLE STABLE
o ES MODULES STABLE STABLE STABLE STABLE STABLE

Useful background — Stuff that comes with the browser

Going to try and explain importance of things as we go even if we don’t fully cover these...

* HTML - Hyper lext Markup Language

* The building block elements of the page embedded In
the browser.

<html>
» <head> (.. </head>
¥ <body>
» V¥ <header> == $0

</header>
» <main> . </main>
» <footer> ... </footer>

» <script type="text/javascript'>i. </script>
</body>
</html>

CSS

Cascading Style Sheets

e Stylesheets. Controls presentation and behavior of
elements. Background colors and fonts and way more.

* Features like variables, functions, pretty amazing stuftf
can be done with just CSS.

* |s a very highly optimized platform for some features

html {

4 font-family: 'Roboto Slab', Arial, serif;
4 font-weight: 300;

4 font-size: 36px;

color: M rgb(53, 74, 93);
}

JavaScript - huge topic to try and summarize

* Very iImportant programming language embedded in the browser...

* Not required for web pages to work but basically to be expected
on most all interactive web pages. Millions of dollars and whole
careers made on JavaScript.

* A lot of web pages wont work without JS enabled.

 Check out the HTTP Almanac — great statistical info on growth of
JavaScript and commentary

More useful background - DOM

* Document Object Model (DOM) — connects web pages to scripts
or programming languages by representing the structure of a
document—such as the HTML representing a web page—in

memory.

* Essentially makes the code into the page “alive” by creating a tree
structure that allows for programs to access it, traverse i,
manipulate it with JavaScript usually.

* This exists on every web page opened Iin a browser

Preface
Focusing on the Why, with a little What and How

 Web Components are in production use out there in some interesting places.

Adobe Photoshop for the Web - Extensive use of web components in Ul, menus
and toolbars and more.

SpaceX - Chromium Base Ul used by astronauts in space using web components

MSFT Edge - Incrementally replacing React contained in Surface Ul with Web
Components

GitHub - uses a bunch of them

Apple Pay Button, discussed more later, a durable Web Component intended to
work in a wide variety of environments.

What Web Components are not...

* Not a library (although there are many libraries). Some argument whether
libraries are necessary to make them usable and useful especially pre-
consistent browser support.

* Not a set of particular components (although many sets of components out
there).

* Not a startup company or vendor product (although some vendors have
heavily adopted web components — See Web Almanac)

 Some contrast made with React components which work differently generally
but React also works with Web Component’s to some degree (more later)

What are web components?

Web Components = 3 main things... not just one thing

1. Custom Elements

e <my-element></my-element>. Defined in JavaScript by extending the
HTMLElement Class. Within some constraints name it what you want!

2. HTML Templates

e <template></template> —Snippets of HTML hidden by default for
reuse. (Won’t discuss much, not always necessary, but v. Useful)

3. Shadow Document Object Model

e Lots to potentially talk about— Shadow DOM allows for encapsulation.

Built-in vs. Custom Elements

e Built-ins are the elements we ‘know and love’ built into the browser—
many of you will recognize some elements.

* Built-ins usually come packaged with ‘user agent styles’ but they can
be restyled almost completely. Built-ins have some semantic meaning
that can be important for things like accessiblility out of the box.

e <p></p> tags are intended for paragraphs.
e <button></button> is intended for a button.

e There are around 150ish built-Ins.

Built-in Elements w/ Shadow Document Object Model

* Fun Note/preview: Some Built-in elements already in browsers have features
similar to web components and use the Shadow Document Object Model.

 For example, the <details><summary></summary></details> element combo
has shadow root “out of the box” by default i.e (user-agent) shadow-root.

¥ <details> == $0
v #shadow-root (user-agent)
» <slot id="details—-summary">(..</slot>
»<slot id="details—-content" style="content-visibility: hidden;
display: block;">¢</slot>
P <style>i.</style>

s 'marker

"Plans for future development of this website"

</summary>
Something small enough to escape

casual notice.

"1l. Integrate Action Network or some other CMS into the
website for a newsletter email campaign function"

</p>

Built-in and Custom Elements
Both fully fledged HTMLElIements!

* Custom elements are what we define and register with JavaScript
into the browser, in a process defined by the HTML Spec. As we will
see, they are full featured HTMLElements.

CustomElementRegistry

</ Baseline Widely available eCHe» e» &» -~

The CustomElementRegistry interface provides methods for registering custom elements and

guerying registered elements. To get an instance of it, use the window.customElements property.

Naming convention, a letter or a word and a dash, i.e ‘a- or b-c or my-element.

https://html.spec.whatwaqg.orqg/#valid-custom-element-name

A valid custom element name is a sequence of characters name that meets all of the following requirements:

e name must match the PotentialCustomE lementName production:

PotentialCustomElementName ::=

[a-z] (PCENChar)x '-' (PCENChar)sx

PCENChar ::=
-t L | [e-9] | "M | [a-z] | #xB7 | [#xCo-#xD6] | [#xD8-#xF6] | [#xF8-#x37D] | [#x37F-#x1FFF] | [#x200C-#x200D] |
[#x203F-#x2040] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDFO-#xFFFD] | [#x10000-
#XEFFFF]

This uses the EBNF notation from the XML specification. [XML]

e name must not be any of the following:

annotation—-xml
color-profile
font-face
font-face-src
font-face-uri
font-face-format
font-face—-name
missing—glyph

o 0O O 0O O O O O

https://html.spec.whatwg.org/#valid-custom-element-name

Custom Elements: Features and constraints

e Follow HTML Rules to be treated like a full HTMLelement !

 Example. element should not contain non children elements, if
making a list item web component needs to be inserted within a 'li tag to
comply

* Wrong:
o <list-item-component></list-item-component>
* Right:
o <list-item-component></list-item-component>

* Cant be void elements i.e Cannot do <my-custom-element /> only

Important tip re “Custom Built-ins”

* Avoid “Custom Built-ins” if you want Safari support
o Example Custom Built in <p is=“example-defined-element”></p>

* MDN not completely clear on this point weirdly enough so important
to stress, its arguably a dead end.

© Note: Please see the is attribute reference for caveats on implementation reality of

custom built-in elements.

HTMLElement

v Instance properties

cccccc Key

HTMLElement

accessKeylLabel
anchorElement Z A

The HTMLElement interface represents any HTML element. Some elements directly implement this attributeStyleMap

autocapitalize

interface, while others implement it via an interface that inherits it.

autofocus

contentEditable
EventTarget Element HTMLElement

dataset

dir

draggable

editContext A
enterKeyHint
hidden

inert

class extends HTMLElement A -

These elements you are about to see are full HTML Elements

Prepare yourself.

<b-c></b-c>

https://bc-web-component.netlify.app/
&&

<apple-pay-button></apple-pay-button>
DEMO TIME

https://bc-web-component.netlify.app/

Features of Apple Pay Button Web Component

* Features of Apple Pay - Demo https://
applepaydemo.apple.com/

* Display Apple Pay Button using JavaScript https://
developer.apple.com/documentation/apple pay on the web/
displaying apple pay buttons using Javascript

e See Apple’s Human Interface Guidelines: https://
developer.apple.com/design/human-interface-guidelines/
apple-pay#Using-Apple-Pay-buttons

https://applepaydemo.apple.com/
https://applepaydemo.apple.com/
https://applepaydemo.apple.com/
https://applepaydemo.apple.com/
https://applepaydemo.apple.com/
https://applepaydemo.apple.com/
https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_using_javascript
https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_using_javascript
https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_using_javascript
https://developer.apple.com/design/human-interface-guidelines/apple-pay#Using-Apple-Pay-buttons
https://developer.apple.com/design/human-interface-guidelines/apple-pay#Using-Apple-Pay-buttons
https://developer.apple.com/design/human-interface-guidelines/apple-pay#Using-Apple-Pay-buttons

Observations

Simplicity of installation, ubiquity of use, practical need and want for some people.
Ctrl+C, Ctrl+V, Get closer to being paid.

Small footprint. Not very big at all.
Apple exerts control over behavior and markup. Vitally important to brand integrity.

Guard Rails (‘visible but protected’). Limited ability to change style by developer and a
great number of pre-defined attribute options from the SDK. Shadow DOM used to set
important styles hidden from rest of page, complex SVG markup — too much to copy
and paste and trust...

Guard Barriers: Buttons hidden and in disabled states if not enabled correctly with SDK.

Script tag doing work for localization, security tokens and licensing. Doing some heavy
lifting!

Questions /
Interactive code session

RE what Frameworks work better or worse with web components
https://custom-elements-everywhere.com/

https://custom-elements-everywhere.com/

Thank you!

Will share slides and links on Slack eventually

